Part Number Hot Search : 
X1001 KBP005 SFA0002 SR510 BC857M HKR11 PDSP16 YT43M
Product Description
Full Text Search
 

To Download OP117707 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Precision Low Noise, Low Input Bias Current Operational Amplifiers OP1177/OP2177/OP4177
FEATURES
Low offset voltage: 60 V maximum Very low offset voltage drift: 0.7 V/C maximum Low input bias current: 2 nA maximum Low noise: 8 nV/Hz typical CMRR, PSRR, and AVO > 120 dB minimum Low supply current: 400 A per amplifier Dual supply operation: 2.5 V to 15 V Unity-gain stable No phase reversal Inputs internally protected beyond supply voltage
PIN CONFIGURATIONS
NC 1 8 NC -IN 2 +IN 3
02627-001
4
5
NC = NO CONNECT
NC = NO CONNECT
Figure 1. 8-Lead MSOP (RM Suffix)
Figure 2. 8-Lead SOIC_N (R Suffix)
OUT A 1 8 V+
02627-003
APPLICATIONS
Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls Thermocouples Resistor thermal detectors (RTDs) Strain bridges Shunt current measurements Precision filters
4
5
V- 4
5 +IN B
Figure 3. 8-Lead MSOP (RM Suffix)
OUT A 1 -IN A 2 +IN A 3 V+ 4 +IN B 5 -IN B 6 OUT B 7 14 OUT D 13 -IN D
Figure 4. 8-Lead SOIC_N (R Suffix)
OP4177
12 +IN D 11 V- 10 +IN C 9 8
02627-005
-IN C OUT C
7
8
Figure 5. 14-Lead SOIC_N (R Suffix)
Figure 6. 14-Lead TSSOP (RU Suffix)
GENERAL DESCRIPTION
The OPx177 family consists of very high precision, single, dual, and quad amplifiers featuring extremely low offset voltage and drift, low input bias current, low noise, and low power consumption. Outputs are stable with capacitive loads of over 1000 pF with no external compensation. Supply current is less than 500 A per amplifier at 30 V. Internal 500 series resistors protect the inputs, allowing input signal levels several volts beyond either supply without phase reversal. Unlike previous high voltage amplifiers with very low offset voltages, the OP1177 (single) and OP2177 (dual) amplifiers are available in tiny 8-lead surface-mount MSOP and 8-lead narrow SOIC packages. The OP4177 (quad) is available in TSSOP and 14-lead narrow SOIC packages. Moreover, specified performance in the MSOP and the TSSOP is identical to performance in the SOIC package. MSOP and TSSOP are available in tape and reel only. The OPx177 family offers the widest specified temperature range of any high precision amplifier in surface-mount packaging. All versions are fully specified for operation from -40C to +125C for the most demanding operating environments. Applications for these amplifiers include precision diode power measurement, voltage and current level setting, and level detection in optical and wireless transmission systems. Additional applications include line-powered and portable instrumentation and controls--thermocouple, RTD, strainbridge, and other sensor signal conditioning--and precision filters.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2001-2007 Analog Devices, Inc. All rights reserved.
02627-006
OUT A -IN A +IN A V+ +IN B -IN B OUT B
1
14
OP4177
OUT D -IN D +IN D V- +IN C -IN C OUT C
02627-004
OUT A -IN A +IN A V-
1
8
OP2177
V+ OUT B -IN B +IN B
-IN A 2 +IN A 3
OP2177
7 OUT B 6 -IN B
02627-002
NC -IN +IN V-
1
8
OP1177
NC V+ OUT NC
OP1177
7 V+ 6 OUT 5 NC
V- 4
OP1177/OP2177/OP4177 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics ............................................................. 4 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution .................................................................................. 5 Typical Performance Characteristics ............................................. 6 Functional Description .................................................................. 14 Total Noise-Including Source Resistors................................... 14 Gain Linearity ............................................................................. 14 Input Overvoltage Protection ................................................... 15 Output Phase Reversal ............................................................... 15 Settling Time ............................................................................... 15 Overload Recovery Time .......................................................... 15 THD + Noise ............................................................................... 16 Capacitive Load Drive ............................................................... 16 Stray Input Capacitance Compensation .................................. 17 Reducing Electromagnetic Interference .................................. 17 Proper Board Layout .................................................................. 18 Difference Amplifiers ................................................................ 18 A High Accuracy Thermocouple Amplifier ........................... 19 Low Power Linearized RTD ...................................................... 19 Single Operational Amplifier Bridge ....................................... 20 Realization of Active Filters .......................................................... 21 Band-Pass KRC or Sallen-Key Filter........................................ 21 Channel Separation .................................................................... 21 References on Noise Dynamics and Flicker Noise ............... 21 Outline Dimensions ....................................................................... 22 Ordering Guide .......................................................................... 24
REVISION HISTORY
11/07--Rev. D to Rev. E Changes to General Description .................................................... 1 Changes to Table 4 ............................................................................ 5 Updated Outline Dimensions ....................................................... 22 7/06--Rev. C to Rev. D Changes to Table 4 ............................................................................ 5 Changes to Figure 51 ...................................................................... 14 Changes to Figure 52 ...................................................................... 15 Changes to Figure 54 ...................................................................... 16 Changes to Figure 58 to Figure 61 ................................................ 17 Changes to Figure 62 and Figure 63 ............................................. 18 Changes to Figure 64 ...................................................................... 19 Changes to Figure 65 and Figure 66 ............................................. 20 Changes to Figure 67 and Figure 68 ............................................. 21 Removed SPICE Model Section ................................................... 21 Updated Outline Dimensions ....................................................... 22 Changes to Ordering Guide .......................................................... 24 4/04--Rev. B to Rev. C Changes to Ordering Guide .............................................................4 Changes to TPC 6 ..............................................................................5 Changes to TPC 26 ............................................................................7 Updated Outline Dimensions ....................................................... 17 4/02--Rev. A to Rev. B Added OP4177 ......................................................................... Global Edits to Specifications .......................................................................2 Edits to Electrical Characteristics Headings ..................................4 Edits to Ordering Guide ...................................................................4 11/01--Rev. 0 to Rev. A Edit to Features ..................................................................................1 Edits to TPC 6 ...................................................................................5 7/01--Revision 0: Initial Version
Rev. E | Page 2 of 24
OP1177/OP2177/OP4177 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 5.0 V, VCM = 0 V, TA = 25C, unless otherwise noted. Table 1.
Parameter INPUT CHARACTERISTICS Offset Voltage OP1177 OP2177/OP4177 OP1177/OP2177 OP4177 Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OP1177/OP2177 OP4177 OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current POWER SUPPLY Power Supply Rejection Ratio OP1177 OP2177/OP4177 Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION Symbol Conditions Min Typ 1 Max Unit
VOS VOS VOS VOS IB IOS CMRR AVO VOS/T VOS/T VOH VOL IOUT
-40C < TA < +125C -40C < TA < +125C -40C < TA < +125C -40C < TA < +125C VCM = -3.5 V to +3.5 V -40C < TA < +125C RL = 2 k, VO = -3.5 V to +3.5 V -40C < TA < +125C -40C < TA < +125C IL = 1 mA, -40C < TA < +125C IL = 1 mA, -40C < TA < +125C VDROPOUT < 1.2 V
-2 -1 -3.5 120 118 1000
15 15 25 25 +0.5 +0.2 126 125 2000 0.2 0.3
60 75 100 120 +2 +1 +3.5
V V V V nA nA V dB dB V/mV V/C V/C V V mA
0.7 0.9
+4
+4.1 -4.1 10
-4
PSRR PSRR ISY
VS = 2.5 V to 15 V -40C < TA < +125C VS = 2.5 V to 15 V -40C < TA < +125C VO = 0 V -40C < TA < +125C RL = 2 k
120 115 118 114
130 125 121 120 400 500 0.7 1.3 0.4 7.9 0.2 0.01 -120
500 600
dB dB dB dB A A V/s MHz V p-p nV/Hz pA/Hz V/V dB
SR GBP en p-p en in CS
0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz DC f = 100 kHz
8.5
1
Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically low estimates for parameters that can have both positive and negative values.
Rev. E | Page 3 of 24
OP1177/OP2177/OP4177
ELECTRICAL CHARACTERISTICS
VS = 15 V, VCM = 0 V, TA = 25C, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage OP1177 OP2177/OP4177 OP1177/OP2177 OP4177 Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OP1177/OP2177 OP4177 OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Output Current Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio OP1177 OP2177/OP4177 Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density MULTIPLE AMPLIFIERS CHANNEL SEPARATION Symbol Conditions Min Typ 1 Max Unit
VOS VOS VOS VOS IB IOS CMRR AVO VOS/T VOS/T VOH VOL IOUT ISC
-40C < TA < +125C -40C < TA < +125C -40C < TA < +125C -40C < TA < +125C VCM = -13.5 V to +13.5 V, -40C < TA < +125C RL = 2 k, VO = -13.5 V to +13.5 V -40C < TA < +125C -40C < TA < +125C IL = 1 mA, -40C < TA < +125C IL = 1 mA, -40C < TA < +125C VDROPOUT < 1.2 V
-2 -1 -13.5 120 1000
15 15 25 25 +0.5 +0.2
60 75 100 120 +2 +1 +13.5
V V V V nA nA V dB V/mV
125 3000 0.2 0.3 0.7 0.9
V/C V/C V V mA mA
+14
+14.1 -14.1 10 25
-14
PSRR PSRR ISY
VS = 2.5 V to 15 V -40C < TA < +125C VS = 2.5 V to 15 V -40C < TA < +125C VO = 0 V -40C < TA < +125C RL = 2 k
120 115 118 114
130 125 121 120 400 500 0.7 1.3 0.4 7.9 0.2 0.01 -120
500 600
dB dB dB dB A A V/s MHz V p-p nV/Hz pA/Hz V/V dB
SR GBP en p-p en in CS
0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz DC f = 100 kHz
8.5
1
Typical values cover all parts within one standard deviation of the average value. Average values given in many competitor data sheets as typical give unrealistically low estimates for parameters that can have both positive and negative values.
Rev. E | Page 4 of 24
OP1177/OP2177/OP4177 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Supply Voltage Input Voltage Differential Input Voltage Storage Temperature Range R, RM, and RU Packages Operating Temperature Range OP1177/OP2177/OP4177 Junction Temperature Range R, RM, and RU Packages Lead Temperature, Soldering (10 sec) Rating 36 V VS- to VS+ Supply Voltage -65C to +150C -40C to +125C -65C to +150C 300C
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 4. Thermal Resistance
Package Type 8-Lead MSOP (RM-8) 1 8-Lead SOIC_N (R-8) 14-Lead SOIC_N (R-14) 14-Lead TSSOP (RU-14)
1
JA 190 158 120 240
JC 44 43 36 43
Unit C/W C/W C/W C/W
MSOP is available in tape and reel only.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ESD CAUTION
Rev. E | Page 5 of 24
OP1177/OP2177/OP4177 TYPICAL PERFORMANCE CHARACTERISTICS
50 45 40 1.8 VSY = 15V 1.6 1.4
OUTPUT VOLTAGE (V)
VSY = 15V TA = 25C
NUMBER OF AMPLIFIERS
35 30 25 20 15 10 5
02627-007
1.2 1.0 0.8 0.6 0.4 0.2 SOURCE SINK
-40
-30
-20 -10 0 10 20 INPUT OFFSET VOLTAGE (V)
30
40
0.01
0.1 LOAD CURRENT (mA)
1
10
Figure 7. Input Offset Voltage Distribution
Figure 10. Output Voltage to Supply Rail vs. Load Current
90
3
VSY = 15V
80
2
VSY = 15V
INPUT BIAS CURRENT (nA)
NUMBER OF AMPLIFIERS
70 60 50 40 30 20 10
02627-008
1
0
-1
-2
0.05
0.15 0.25 0.35 0.45 0.55 INPUT OFFSET VOLTAGE DRIFT (V/C)
0.65
0
50 TEMPERATURE (C)
100
150
Figure 8. Input Offset Voltage Drift Distribution
Figure 11. Input Bias Current vs. Temperature
140 VSY = 15V 120
60 50 40 30 GAIN 20 10 0 -10
02627-009
270
VSY = 15V CL = 0 RL =
225 180 135 90 PHASE 45 0 -45
02627-012
NUMBER OF AMPLIFIERS
80 60 40 20 0
OPEN-LOOP GAIN (dB)
100
0
0.1
0.2 0.3 0.4 0.5 INPUT BIAS CURRENT (nA)
0.6
0.7
-20 100k
1M FREQUENCY (Hz)
-90 10M
Figure 9. Input Bias Current Distribution
Figure 12. Open-Loop Gain and Phase Shift vs. Frequency
Rev. E | Page 6 of 24
PHASE SHIFT (Degrees)
02627-011
0
-3 -50
02627-010
0
0 0.001
OP1177/OP2177/OP4177
120 100 80
CLOSED-LOOP GAIN (dB)
VSY = 15V VIN = 4mV p-p CL = 0 RL = AV = 100 AV = 10
VOLTAGE (100mV/DIV)
60 40 20 0 -20 -40 -60 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M
02627-013
VSY = 15V CL = 1,000pF RL = 2k VIN = 100mV AV = 1
AV = 1
GND
-80
TIME (100s/DIV)
Figure 13. Closed-Loop Gain vs. Frequency
Figure 16. Small Signal Transient Response
500 450 400
OUTPUT IMPEDANCE ()
50
VSY = 15V VIN = 50mV p-p
45
SMALL SIGNAL OVERSHOOT (%)
40 35 30 25 20 15 10 5
VSY = 15V RL = 2k VIN = 100mV p-p
350 300 250 200 150 100 50
02627-014
AV = 10 AV = 100
AV = 1
+OS
-OS
1k
10k 100k FREQUENCY (Hz)
1M
1
10
100 CAPACITANCE (pF)
1k
10k
Figure 14. Output Impedance vs. Frequency
Figure 17. Small Signal Overshoot vs. Load Capacitance
VSY = 15V CL = 300pF RL = 2k VIN = 4V AV = 1
0V -15V
VSY = 15V RL = 10k AV = -100 VIN = 200mV
OUTPUT
VOLTAGE (1V/DIV)
+200mV
GND
INPUT
0V
02627-018
02627-015
TIME (100s/DIV)
TIME (10s/DIV)
Figure 15. Large Signal Transient Response
Figure 18. Positive Overvoltage Recovery
Rev. E | Page 7 of 24
02627-017
0 100
0
02627-016
OP1177/OP2177/OP4177
15V 0V
VNOISE (0.2V/DIV)
OUTPUT
VSY = 15V
VSY = 15V RL = 10k AV = -100 VIN = 200mV 0V
-200mV
INPUT
02627-019
02627-022
TIME (4s/DIV)
TIME (1s/DIV)
Figure 19. Negative Overvoltage Recovery
Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise
140
18
VSY = 15V
VSY = 15V
VOLTAGE NOISE DENSITY (nV/Hz)
02627-020
120 100
16 14 12 10 8 6 4
02627-023 02627-024
CMRR (dB)
80 60 40 20 0
10
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
2
0
50
100 150 FREQUENCY (Hz)
200
250
Figure 20. CMRR vs. Frequency
Figure 23. Voltage Noise Density vs. Frequency
140
35 VSY = 15V VSY = 15V 30
SHORT-CIRCUIT CURRENT (mA)
120 100
25 20 15 10 5 0 -50
+ISC -ISC
PSRR (dB)
-PSRR
80
+PSRR
60 40 20 0
10
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
02627-021
0
50 TEMPERATURE (C)
100
150
Figure 21. PSRR vs. Frequency
Figure 24. Short-Circuit Current vs. Temperature
Rev. E | Page 8 of 24
OP1177/OP2177/OP4177
14.40
133
VSY = 15V
14.35
132 131
VSY = 15V
OUTPUT VOLTAGE SWING (V)
14.30
+VOH -VOL
130
14.20 14.15 14.10
CMRR (dB)
02627-025
14.25
129 128 127 126 125
14.05 14.00 -50
124
0
50 TEMPERATURE (C)
100
150
0
50 TEMPERATURE (C)
100
150
Figure 25. Output Voltage Swing vs. Temperature
Figure 28. CMRR vs. Temperature
0.5 0.4
133
VSY = 15V
132 131 130
VSY = 15V
OFFSET VOLTAGE (V)
0.3 0.2
0 -0.1 -0.2 -0.3 -0.4
02627-026
PSRR (dB)
0.1
129 128 127 126 125 124
0
20 40 60 80 100 120 TIME FROM POWER SUPPLY TURN-ON (Sec)
140
0
50
TEMPERATURE (C)
100
150
Figure 26. Warm-Up Drift
Figure 29. PSRR vs. Temperature
18
VSY = 15V
16
50 45 40
VSY = 5V
INPUT OFFSET VOLTAGE (V)
NUMBER OF AMPLIFIERS
14 12 10 8 6 4 2
02627-027
35 30 25 20 15 10 5
0
50
TEMPERATURE (C)
100
150
-40
-30
-20 -10 0 10 20 INPUT OFFSET VOLTAGE (V)
30
40
Figure 27. Input Offset Voltage vs. Temperature
Figure 30. Input Offset Voltage Distribution
Rev. E | Page 9 of 24
02627-030
0 -50
0
02627-029
-0.5
123 -50
02627-028
123 -50
OP1177/OP2177/OP4177
1.4 1.2
500
VSY = 5V TA = 25C
OUTPUT IMPEDANCE ()
450 400
VSY = 5V VIN = 50mV p-p
OUTPUT VOLTAGE (V)
1.0 0.8 0.6 0.4 0.2 0 0.001
350 300 250 200 150 100 50
SINK
SOURCE
AV = 100 AV = 10
AV = 1
02627-031
0.01
0.1 1 LOAD CURRENT (mA)
10
1k
10k 100k FREQUENCY (Hz)
1M
Figure 31. Output Voltage to Supply Rail vs. Load Current
Figure 34. Output Impedance vs. Frequency
60 50 40 30 GAIN 20 10 0 -10 -20 100k PHASE
VSY = 5V CL = 0 RL =
270 225 180 135 90 45 0 -45
02627-032
PHASE SHIFT (Degrees)
OPEN-LOOP GAIN (dB)
VSY = 5V CL = 300pF RL = 2k VIN = 1V AV = 1
VOLTAGE (1V/DIV)
GND
1M FREQUENCY (Hz)
-90 10M
TIME (100s/DIV)
Figure 32. Open-Loop Gain and Phase Shift vs. Frequency
Figure 35. Large Signal Transient Response
120 100 80 VSY = 5V VIN = 4mV p-p CL = 0 RL =
CLOSED-LOOP GAIN (dB)
60 40 20 0 -20 -40 -60 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M
02627-033
AV = 100 AV = 10
AV = 1
VOLTAGE (50mV/DIV)
VSY = 5V CL = 1,000pF RL = 2k VIN = 100mV AV = 1
GND
-80
TIME (10s/DIV)
Figure 33. Closed-Loop Gain vs. Frequency
Figure 36. Small Signal Transient Response
Rev. E | Page 10 of 24
02627-036
02627-035
02627-034
0 100
OP1177/OP2177/OP4177
50 45
VSY = 5V RL = 2k VIN = 100mV
INPUT
SMALL SIGNAL OVERSHOOT (%)
VS = 5V AV = 1 RL = 10k
40 35 30 25 20 15 10 5 1
VOLTAGE (2V/DIV)
GND
+OS
-OS
OUTPUT
10
100 CAPACITANCE (pF)
1k
10k
02627-037
TIME (200s/DIV)
Figure 37. Small Signal Overshoot vs. Load Capacitance
Figure 40. No Phase Reversal
0V -15V
VSY = 5V RL = 10k AV = -100 VIN = 200mV
140
VSY = 5V
OUTPUT
120 100
CMRR (dB)
80 60 40
+200mV
INPUT
0V
02627-038
20 0
TIME (4s/DIV)
10
100
1k
10k 100k FREQUENCY (Hz)
1M
10M
Figure 38. Positive Overvoltage Recovery
Figure 41. CMRR vs. Frequency
5V 0V
OUTPUT
VSY = 5V RL = 10k AV = -100 VIN = 200mV
200 180 160 140
PSRR (dB)
VSY = 5V
120 100
INPUT
-PSRR
80 60 40
0V
+PSRR
-200mV
02627-039
20 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M
02627-042
0
TIME (4s/DIV)
Figure 39. Negative Overvoltage Recovery
Figure 42. PSRR vs. Frequency
Rev. E | Page 11 of 24
02627-041
02627-040
0
OP1177/OP2177/OP4177
VSY = 5V
4.40
VSY = 5V
4.35
OUTPUT VOLTAGE SWING (V)
4.30
VNOISE (0.2V/DIV)
+VOH
4.25 4.20 4.15 4.10 4.05
-VOL
02627-043
TIME (1s/DIV)
0
50 TEMPERATURE (C)
100
150
Figure 43. 0.1 Hz to 10 Hz Input Voltage Noise
Figure 46. Output Voltage Swing vs. Temperature
18
25
VSY = 5V
VOLTAGE NOISE DENSITY (nV/Hz)
VSY = 5V
20
16 14 12 10 8 6 4
02627-044
02627-047 02627-048
INPUT OFFSET VOLTAGE (V)
15
10
5
2
0
50
100 150 FREQUENCY (Hz)
200
250
0 -50
0
50
TEMPERATURE (C)
100
150
Figure 44. Voltage Noise Density vs. Frequency
Figure 47. Input Offset Voltage vs. Temperature
35
600
VSY = 5V
30
SHORT-CIRCUIT CURRENT (mA)
500
+ISC
VSY = 15V
SUPPLY CURRENT (A)
25 -ISC 20 15 10 5 0 -50
400 VSY = 5V 300
200
100
0
50 TEMPERATURE (C)
100
150
02627-045
0 -50
0
50 TEMPERATURE (C)
100
150
Figure 45. Short-Circuit Current vs. Temperature
Figure 48. Supply Current vs. Temperature
Rev. E | Page 12 of 24
02627-046
4.00 -50
OP1177/OP2177/OP4177
450
0
TA = 25C
400
-20
CHANNEL SEPARATION (dB)
SUPPLY CURRENT (A)
350 300 250 200 150 100 50
02627-049
-40 -60 -80 -100 -120 -140
02627-050
0
-160 10 100 1k 10k FREQUENCY (Hz) 100k 1M
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE (V)
Figure 49. Supply Current vs. Supply Voltage
Figure 50. Channel Separation vs. Frequency
Rev. E | Page 13 of 24
OP1177/OP2177/OP4177 FUNCTIONAL DESCRIPTION
The OPx177 series is the fourth generation of Analog Devices, Inc., industry-standard OP07 amplifier family. OPx177 is a high precision, low noise operational amplifier with a combination of extremely low offset voltage and very low input bias currents. Unlike JFET amplifiers, the low bias and offset currents are relatively insensitive to ambient temperatures, even up to 125C. Analog Devices proprietary process technology and linear design expertise has produced a high voltage amplifier with superior performance to the OP07, OP77, and OP177 in a tiny MSOP 8lead package. Despite its small size, the OPx177 offers numerous improvements, including low wideband noise, very wide input and output voltage range, lower input bias current, and complete freedom from phase inversion. OPx177 has a specified operating temperature range as wide as any similar device in a plastic surface-mount package. This is increasingly important as PCB and overall system sizes continue to shrink, causing internal system temperatures to rise. Power consumption is reduced by a factor of four from the OP177, and bandwidth and slew rate increase by a factor of two. The low power dissipation and very stable performance vs. temperature also act to reduce warmup drift errors to insignificant levels. Open-loop gain linearity under heavy loads is superior to competitive parts, such as the OPA277, improving dc accuracy and reducing distortion in circuits with high closed-loop gains. Inputs are internally protected from overvoltage conditions referenced to either supply rail. Like any high performance amplifier, maximum performance is achieved by following appropriate circuit and PCB guidelines. The following sections provide practical advice on getting the most out of the OPx177 under a variety of application conditions. For RS < 3.9 k, en dominates and en,TOTAL en For 3.9 k < RS < 412 k, voltage noise of the amplifier, the current noise of the amplifier translated through the source resistor, and the thermal noise from the source resistor all contribute to the total noise. For RS > 412 k, the current noise dominates and en,TOTAL inRS The total equivalent rms noise over a specific bandwidth is expressed as
en =
(e
n , TOTAL
)
BW
where BW is the bandwidth in hertz. The preceding analysis is valid for frequencies larger than 50 Hz. When considering lower frequencies, flicker noise (also known as 1/f noise) must be taken into account. For a reference on noise calculations, refer to the Band-Pass KRC or Sallen-Key Filter section.
GAIN LINEARITY
Gain linearity reduces errors in closed-loop configurations. The straighter the gain curve, the lower the maximum error over the input signal range. This is especially true for circuits with high closed-loop gains. The OP1177 has excellent gain linearity even with heavy loads, as shown in Figure 51. Compare its performance to the OPA277, shown in Figure 52. Both devices are measured under identical conditions, with RL = 2 k. The OP2177 (dual) has virtually no distortion at lower voltages. Compared to the OPA277 at several supply voltages and various loads, OP1177 performance far exceeds that of its counterpart.
VSY = 15V RL = 2k
TOTAL NOISE-INCLUDING SOURCE RESISTORS
The low input current noise and input bias current of the OPx177 make it useful for circuits with substantial input source resistance. Input offset voltage increases by less than 1 V maximum per 500 of source resistance. The total noise density of the OPx177 is
(10V/DIV)
en, TOTAL = en2 + (in RS ) 2 + 4kTRS
where: en is the input voltage noise density. in is the input current noise density. RS is the source resistance at the noninverting terminal. k is Boltzmann's constant (1.38 x 10-23 J/K). T is the ambient temperature in Kelvin (T = 273 + temperature in degrees Celsius).
OP1177
(5V/DIV)
Figure 51. Gain Linearity
Rev. E | Page 14 of 24
02627-051
OP1177/OP2177/OP4177
VSY = 15V RL = 2k
VSY = 10V AV = 1
VOLTAGE (5V/DIV)
VIN VOUT
(10V/DIV)
OPA277
02627-052
(5V/DIV)
TIME (400s/DIV)
Figure 52. Gain Linearity
Figure 53. No Phase Reversal
INPUT OVERVOLTAGE PROTECTION
When input voltages exceed the positive or negative supply voltage, most amplifiers require external resistors to protect them from damage. The OPx177 has internal protective circuitry that allows voltages as high as 2.5 V beyond the supplies to be applied at the input of either terminal without any harmful effects. Use an additional resistor in series with the inputs if the voltage exceeds the supplies by more than 2.5 V. The value of the resistor can be determined from the formula
SETTLING TIME
Settling time is defined as the time it takes an amplifier output to reach and remain within a percentage of its final value after application of an input pulse. It is especially important in measurement and control circuits in which amplifiers buffer ADC inputs or DAC outputs. To minimize settling time in amplifier circuits, use proper bypassing of power supplies and an appropriate choice of circuit components. Resistors should be metal film types, because they have less stray capacitance and inductance than their wire-wound counterparts. Capacitors should be polystyrene or polycarbonate types to minimize dielectric absorption. The leads from the power supply should be kept as short as possible to minimize capacitance and inductance. The OPx177 has a settling time of about 45 s to 0.01% (1 mV) with a 10 V step applied to the input in a noninverting unity gain.
(V IN - VS ) 5 mA R S + 500
With the OPx177 low input offset current of <1 nA maximum, placing a 5 k resistor in series with both inputs adds less than 5 V to input offset voltage and has a negligible impact on the overall noise performance of the circuit. 5 k protects the inputs to more than 27 V beyond either supply. Refer to the THD + Noise section for additional information on noise vs. source resistance.
OVERLOAD RECOVERY TIME
Overload recovery is defined as the time it takes the output voltage of an amplifier to recover from a saturated condition to its linear response region. A common example is one in which the output voltage demanded by the transfer function of the circuit lies beyond the maximum output voltage capability of the amplifier. A 10 V input applied to an amplifier in a closedloop gain of 2 demands an output voltage of 20 V. This is beyond the output voltage range of the OPx177 when operating at 15 V supplies and forces the output into saturation. Recovery time is important in many applications, particularly where the operational amplifier must amplify small signals in the presence of large transient voltages.
OUTPUT PHASE REVERSAL
Phase reversal is defined as a change of polarity in the amplifier transfer function. Many operational amplifiers exhibit phase reversal when the voltage applied to the input is greater than the maximum common-mode voltage. In some instances, this can cause permanent damage to the amplifier. In feedback loops, it can result in system lockups or equipment damage. The OPx177 is immune to phase reversal problems even at input voltages beyond the supplies.
Rev. E | Page 15 of 24
02627-053
OP1177/OP2177/OP4177
R2 100k R1 1k 200mV + -
V+ 2 7
VOUT 10k
02627-054
OP1177
3 4 V-
6
Figure 56 is a scope shot of the output of the OPx177 in response to a 400 mV pulse. The load capacitance is 2 nF. The circuit is configured in positive unity gain, the worst-case condition for stability. As shown in Figure 58, placing an R-C network parallel to the load capacitance (CL) allows the amplifier to drive higher values of CL without causing oscillation or excessive overshoot. There is no ringing, and overshoot is reduced from 27% to 5% using the snubber network. Optimum values for RS and CS are tabulated in Table 5 for several capacitive loads, up to 200 nF. Values for other capacitive loads can be determined experimentally. Table 5. Optimum Values for Capacitive Loads
CL 10 nF 50 nF 200 nF RS 20 30 200 CS 0.33 F 6.8 nF 0.47 F
Figure 54. Test Circuit for Overload Recovery Time
Figure 18 shows the positive overload recovery time of the OP1177. The output recovers in less than 4 s after being overdriven by more than 100%. The negative overload recovery of the OP1177 is 1.4 s, as seen in Figure 19.
THD + NOISE
The OPx177 has very low total harmonic distortion. This indicates excellent gain linearity and makes the OPx177 a great choice for high closed-loop gain precision circuits. Figure 55 shows that the OPx177 has approximately 0.00025% distortion in unity gain, the worst-case configuration for distortion.
0.1 VSY = 15V RL = 10k BW = 22kHz
VSY = 5V RL = 10k CL = 2nF
0.01
THD + N (%)
VOLTAGE (200mV/DIV)
0 GND
0.001
TIME (10s/DIV)
100
FREQUENCY (Hz)
1k
6k
Figure 55. THD + N vs. Frequency
02627-055
0.0001 20
Figure 56. Capacitive Load Drive Without Snubber
CAPACITIVE LOAD DRIVE
VOLTAGE (200mV/DIV)
OPx177 is inherently stable at all gains and capable of driving large capacitive loads without oscillation. With no external compensation, the OPx177 safely drives capacitive loads up to 1000 pF in any configuration. As with virtually any amplifier, driving larger capacitive loads in unity gain requires additional circuitry to assure stability. In this case, a snubber network is used to prevent oscillation and reduce the amount of overshoot. A significant advantage of this method is that it does not reduce the output swing because the Resistor RS is not inside the feedback loop.
VSY = 5V RL = 10k RS = 200 CL = 2nF CS = 0.47F
GND
TIME (10s/DIV)
Figure 57. Capacitive Load Drive with Snubber
Rev. E | Page 16 of 24
02627-057
02627-056
OP1177/OP2177/OP4177
V+ 2 7
Cf
OP1177
400mV + -
6
RS CL
VOUT CS
+ V1 -
R1
R2 V+
3 4 V-
02627-058
2 Ct
7
Figure 58. Snubber Network Configuration
OP1177
3 4
6
VOUT
02627-060
Caution: The snubber technique cannot recover the loss of bandwidth induced by large capacitive loads.
V-
Figure 60. Compensation Using Feedback Capacitor
STRAY INPUT CAPACITANCE COMPENSATION
The effective input capacitance in an operational amplifier circuit (Ct) consists of three components. These are the internal differential capacitance between the input terminals, the internal common-mode capacitance of each input to ground, and the external capacitance including parasitic capacitance. In the circuit in Figure 59, the closed-loop gain increases as the signal frequency increases. The transfer function of the circuit is
1+ R2 (1 + sC t R1) R1
REDUCING ELECTROMAGNETIC INTERFERENCE
A number of methods can be utilized to reduce the effects of EMI on amplifier circuits. In one method, stray signals on either input are coupled to the opposite input of the amplifier. The result is that the signal is rejected according to the CMRR of the amplifier. This is usually achieved by inserting a capacitor between the inputs of the amplifier, as shown in Figure 61. However, this method can also cause instability, depending on the value of capacitance.
R1 R2 V+ + V1 - C 3
02627-061
indicating a zero at
s=
R2 + R1 1 = R2R1C t 2 (R1/ R2 ) C t
2
7
OP1177
4 V-
6
VOUT
Depending on the value of R1 and R2, the cutoff frequency of the closed-loop gain can be well below the crossover frequency. In this case, the phase margin (M) can be severely degraded, resulting in excessive ringing or even oscillation. A simple way to overcome this problem is to insert a capacitor in the feedback path, as shown in Figure 60. The resulting pole can be positioned to adjust the phase margin. Setting Cf = (R1/R2) Ct achieves a phase margin of 90.
R1 R2 V+ + V1 - Ct 2 7
Figure 61. EMI Reduction
Placing a resistor in series with the capacitor (see Figure 62) increases the dc loop gain and reduces the output error. Positioning the breakpoint (introduced by R-C) below the secondary pole of the operational amplifier improves the phase margin and, therefore, stability. R can be chosen independently of C for a specific phase margin according to the formula
R= R2 R2 - 1 + a ( jf 2 ) R1
OP1177
3 V- 4
6
VOUT
02627-059
where: a is the open-loop gain of the amplifier. f2 is the frequency at which the phase of a = M - 180.
R2
Figure 59. Stray Input Capacitance
R1
V+
2
7
+ V1 -
R C
OP1177
3
6
VOUT
02627-062
4 V-
Figure 62. Compensation Using Input R-C Network
Rev. E | Page 17 of 24
OP1177/OP2177/OP4177
PROPER BOARD LAYOUT
The OPx177 is a high precision device. To ensure optimum performance at the PCB level, care must be taken in the design of the board layout. To avoid leakage currents, the surface of the board should be kept clean and free of moisture. Coating the surface creates a barrier to moisture accumulation and helps reduce parasitic resistance on the board. Keeping supply traces short and properly bypassing the power supplies minimizes power supply disturbances due to output current variation, such as when driving an ac signal into a heavy load. Bypass capacitors should be connected as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. It is recommended that signal traces be kept at least 5 mm from supply lines to minimize coupling. A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple effects, orient resistors so heat sources warm both ends equally. Input signal paths should contain matching numbers and types of components, where possible to match the number and type of thermocouple junctions. For example, dummy components such as zero value resistors can be used to match real resistors in the opposite input path. Matching components should be located in close proximity and should be oriented in the same manner. Ensure leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical. The use of a ground plane is highly recommended. A ground plane reduces EMI noise and also helps to maintain a constant temperature across the circuit board. In the single instrumentation amplifier (see Figure 63), where
R4 R2 = R3 R1 VO = R2 (V 2 - V1 ) R1
a mismatch between the ratio R2/R1 and R4/R3 causes the common-mode rejection ratio to be reduced. To better understand this effect, consider that, by definition,
CMRR = A DM ACM
where ADM is the differential gain and ACM is the commonmode gain.
A DM = VO V and ACM = O VCM V DIFF 1 (V1 + V 2 ) 2
V DIFF = V1 - V 2 and VCM =
For this circuit to act as a difference amplifier, its output must be proportional to the differential input signal. From Figure 63,
R2 1 + R2 V + R1 V 2 VO = - 1 R1 1 + R3 R4
Arranging terms and combining the previous equations yields
CMRR = R4R1 + R3R2 + 2 R4R2 2 R4R1 - 2 R2R3
(1)
The sensitivity of CMRR with respect to the R1 is obtained by taking the derivative of CMRR, in Equation 1, with respect to R1. CMRR R1R4 2R2R4 + R2R3 = + R1 R1 2R1R4 - 2R2R3 2R1R4 - 2R2R3
CMRR 1 = (2R2R3 ) R1 2- R1R4
DIFFERENCE AMPLIFIERS
Difference amplifiers are used in high accuracy circuits to improve the common-mode rejection ratio (CMRR).
R2 100k
V+
V1 R1
2
7
Assuming that
6 VOUT
OP1177
3
R1 R2 R3 R4 R and R(1 - ) < R1, R2, R3, R4 < R(1 + )
02627-063
4 V-
V2 R3 = R1
R4 R2 = R3 R1
R4 = R1
the worst-case CMRR error arises when R1 = R4 = R(1 + ) and R2 = R3 = R(1 - )
Figure 63. Difference Amplifier
Rev. E | Page 18 of 24
OP1177/OP2177/OP4177
Plugging these values into Equation 1 yields CMRR MIN 1 2
C1 2.2F VCC R9 200k V+ 0.1F
ADR293
R3 47k D1 10F D1 R2 4.02k Cu R6 50 2 R7 80.6k
where is the tolerance of the resistors. Lower tolerance value resistors result in higher common-mode rejection (up to the CMRR of the operational amplifier).
(-)
TR VTC TR
R8 1k
10F 7
Using 5% tolerance resistors, the highest CMRR that can be guaranteed is 20 dB. Alternatively, using 0.1% tolerance resistors results in a common-mode rejection ratio of at least 54 dB (assuming that the operational amplifier CMRR x 54 dB). With the CMRR of OPx177 at 120 dB minimum, the resistor match is the limiting factor in most circuits. A trimming resistor can be used to further improve resistor matching and CMRR of the difference amplifier circuit.
TJ (+)
Cu R1 50
R5 100 10F R4 50
3
OP1177
4 10F
6
VOUT
ISOTHERMAL BLOCK
0.1F V-
Figure 64. Type K Thermocouple Amplifier Circuit
LOW POWER LINEARIZED RTD
A common application for a single element varying bridge is an RTD thermometer amplifier, as shown in Figure 65. The excitation is delivered to the bridge by a 2.5 V reference applied at the top of the bridge. RTDs may have thermal resistance as high as 0.5C to 0.8C per mW. To minimize errors due to resistor drift, the current through each leg of the bridge must be kept low. In this circuit, the amplifier supply current flows through the bridge. However, at the OPx177 maximum supply current of 600 A, the RTD dissipates less than 0.1 mW of power, even at the highest resistance. Errors due to power dissipation in the bridge are kept under 0.1C. Calibration of the bridge is made at the minimum value of temperature to be measured by adjusting RP until the output is zero. To calibrate the output span, set the full-scale and linearity potentiometers to midpoint and apply a 500C temperature to the sensor or substitute the equivalent 500C RTD resistance. Adjust the full-scale potentiometer for a 5 V output. Finally, apply 250C or the equivalent RTD resistance and adjust the linearity potentiometer for 2.5 V output. The circuit achieves better than 0.5C accuracy after adjustment.
A HIGH ACCURACY THERMOCOUPLE AMPLIFIER
A thermocouple consists of two dissimilar metal wires placed in contact. The dissimilar metals produce a voltage VTC = (TJ - TR) where: TJ is the temperature at the measurement of the hot junction. TR is the temperature at the cold junction. is the Seebeck coefficient specific to the dissimilar metals used in the thermocouple. VTC is the thermocouple voltage and becomes larger with increasing temperature. Maximum measurement accuracy requires cold junction compensation of the thermocouple. To perform the cold junction compensation, apply a copper wire short across the terminating junctions (inside the isothermal block) simulating a 0C point. Adjust the output voltage to zero using the R5 trimming resistor, and remove the copper wire. The OPx177 is an ideal amplifier for thermocouple circuits because it has a very low offset voltage, excellent PSRR and CMRR, and low noise at low frequencies. It can be used to create a thermocouple circuit with great linearity. Resistor R1, Resistor R2, and Diode D1, shown in Figure 64, are mounted in an isothermal block.
Rev. E | Page 19 of 24
02627-064
OP1177/OP2177/OP4177
+15V
0.1F
ADR421
4.12k 4.37k 6 4.12k 100 5 100 20
500 200
where = R/R is the fractional deviation of the RTD resistance with respect to the bridge resistance due to the change in temperature at the RTD. For << 1, the preceding expression becomes
VOUT
1/2 OP2177
7
5k 49.9k 100 RTD 2 V+
R2 V = VO REF 1 + R1 + R1 R R R2 R2 R1 R1 R 1 + R2 + R2 VREF
With VREF constant, the output voltage is linearly proportional to with a gain factor of
8
3
1/2 OP2177
4 V-
1
VOUT
02627-065
R2 R1 R1 V REF 1 + + R R2 R2
15V RF 0.1F
Figure 65. Low Power Linearized RTD Circuit
ADR421
R R 2 R(1+) R 3
SINGLE OPERATIONAL AMPLIFIER BRIDGE
The low input offset voltage drift of the OP1177 makes it very effective for bridge amplifier circuits used in RTD signal conditioning. It is often more economical to use a single bridge operational amplifier as opposed to an instrumentation amplifier. In the circuit shown in Figure 66, the output voltage at the operational amplifier is
V+ 7 VOUT
OP1177
4 V- RF
6
Figure 66. Single Bridge Amplifier
R2 VREF VO = R
R1 R1 + 1 + (1 + ) R R2
Rev. E | Page 20 of 24
02627-066
OP1177/OP2177/OP4177 REALIZATION OF ACTIVE FILTERS
BAND-PASS KRC OR SALLEN-KEY FILTER
The low offset voltage and the high CMRR of the OPx177 make it an excellent choice for precision filters, such as the band-pass KRC filter shown in Figure 67. This filter type offers the capability to tune the gain and the cutoff frequency independently. Because the common-mode voltage into the amplifier varies with the input signal in the KRC filter circuit, a high CMRR is required to minimize distortion. Also, the low offset voltage of the OPx177 allows a wider dynamic range when the circuit gain is chosen to be high. The circuit of Figure 67 consists of two stages. The first stage is a simple high-pass filter where the corner frequency (fC) is
1 2 C1C2R1R2
CHANNEL SEPARATION
Multiple amplifiers on a single die are often required to reject any signals originating from the inputs or outputs of adjacent channels. OP2177 input and bias circuitry is designed to prevent feedthrough of signals from one amplifier channel to the other. As a result, the OP2177 has an impressive channel separation of greater than -120 dB for frequencies up to 100 kHz and greater than -115 dB for signals up to 1 MHz.
C3 680pF
R2 10k
V+ 6 C2 10nF + C1 10nF R1 20k 8 R3 33k R4 33k C4 330pF
2
(2)
and
Q=K R1 R2
5
1/2 OP2177
4
7
3
1/2 OP2177
1
VOUT
(3)
-
Figure 67. Two-Stage, Band-Pass KRC Filter
where K is the dc gain. Choosing equal capacitor values minimizes the sensitivity and simplifies Equation 2 to
10k V+ 6 8 2 7 1 100
1 2C R1R2
The value of Q determines the peaking of the gain vs. frequency (ringing in transient response). Commonly chosen values for Q are generally near unity. yields minimum gain peaking and minimum 2 ringing. Determine values for R1 and R2 by using Equation 3. 1 For Q = , R1/R2 = 2 in the circuit example. Select R1 = 5 k 2 and R2 = 10 k for simplicity. The second stage is a low-pass filter where the corner frequency can be determined in a similar fashion. For R3 = R4 = R Setting Q =
1
V1 50mV + -
5
1/2 OP2177
4 V-
1/2 OP2177
3
02627-068
Figure 68. Channel Separation Test Circuit
REFERENCES ON NOISE DYNAMICS AND FLICKER NOISE
S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill, 1998. Analog Devices, Inc., The Best of Analog Dialogue, 1967 to 1991. Analog Devices, Inc., 1991.
fC = 2R
1 C3 C4
and Q =
1 C3 2 C4
Rev. E | Page 21 of 24
02627-067
V1
V-
OP1177/OP2177/OP4177 OUTLINE DIMENSIONS
5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497)
8 1 5 4
6.20 (0.2441) 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) 0.25 (0.0099) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
0.51 (0.0201) 0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 69. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
8.75 (0.3445) 8.55 (0.3366)
14 1 8 7
4.00 (0.1575) 3.80 (0.1496)
6.20 (0.2441) 5.80 (0.2283)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122)
1.75 (0.0689) 1.35 (0.0531) SEATING PLANE
0.50 (0.0197) 0.25 (0.0098) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
012407-A
Figure 70. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)
Rev. E | Page 22 of 24
060606-A
OP1177/OP2177/OP4177
3.20 3.00 2.80
3.20 3.00 2.80 PIN 1
8
5
1
5.15 4.90 4.65
4
0.65 BSC 0.95 0.85 0.75 0.15 0.00 0.38 0.22 SEATING PLANE 1.10 MAX 8 0 0.80 0.60 0.40
0.23 0.08
COPLANARITY 0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 71. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters
5.10 5.00 4.90
14
8
4.50 4.40 4.30
1 7
6.40 BSC
PIN 1 1.05 1.00 0.80 0.65 BSC 1.20 MAX 0.15 0.05 0.30 0.19
0.20 0.09
SEATING COPLANARITY PLANE 0.10
8 0
0.75 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 72. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters
Rev. E | Page 23 of 24
OP1177/OP2177/OP4177
ORDERING GUIDE
Model OP1177AR OP1177AR-REEL OP1177AR-REEL7 OP1177ARZ 1 OP1177ARZ-REEL1 OP1177ARZ-REEL71 OP1177ARM-R2 OP1177ARM-REEL OP1177ARMZ-R21 OP1177ARMZ-REEL1 OP2177AR OP2177AR-REEL OP2177AR-REEL7 OP2177ARZ1 OP2177ARZ-REEL1 OP2177ARZ-REEL71 OP2177ARM-R2 OP2177ARM-REEL OP2177ARMZ-R21 OP2177ARMZ-REEL1 OP4177AR OP4177AR-REEL OP4177AR-REEL7 OP4177ARZ1 OP4177ARZ-REEL1 OP4177ARZ-REEL71 OP4177ARU OP4177ARU-REEL OP4177ARUZ1 OP4177ARUZ-REEL1
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP
Package Option R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 R-14 R-14 R-14 R-14 R-14 R-14 RU-14 RU-14 RU-14 RU-14
Branding
AZA AZA AZA# AZA#
B2A B2A B2A# B2A#
Z = RoHS Compliant Part; # denotes Pb-free product may be top or bottom marked.
(c)2001-2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02627-0-11/07(E)
Rev. E | Page 24 of 24


▲Up To Search▲   

 
Price & Availability of OP117707

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X